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Factors Affecting the Non-Newtonian Viscosity of Rigid Particles1 

BY JEN T S I YANG 

RECEIVED FEBRUARY 3, 1959 

The viscosities of two poly-7-benzyl-L-glutamate samples and a mixture of them were measured as a function of shearing 
stress T (up to 106 dynes cm.""2) in w-cresol in which the polypeptides exist as rod-like a-helices. Marked reduction in the 
intrinsic viscosity Iv] (to less than 5 % of its value at r = 0 for the high molecular weight sample) can be achieved at the 
highest attainable T. The data support previous findings2 thus further confirming the validity of the viscosity theories for 
rigid particles. The shear dependence of [17] of a rigid system gives a composite curve independent of solvent viscosity and 
temperature T when [-q] is plotted against T/T. The critical shearing stress r„ (above which the viscosity drops sharply) 
depends upon the size and shape of the polymers. The longer the particles, the smaller is the rc. The effect of polydispersitv 
results in a broadening of the non-Newtonian region and gives higher apparent length Lapp at lower rate of shear D. The 
mean length at zero shear, however, is smaller than Z.app under finite shear. The controversy on the so-called power law 
of viscosity is partly attributed to the effect of polydispersity which can cause the viscosity to obey a pseudo-odd function of 
T or Z). 

Introduction 
The shear dependence of the viscosity of poly­

mer solutions has been troublesome in the deter­
mination of size and shape of the macromolecules. 
The interpretation of their intrinsic viscosity has 
often been complicated by the uncertainty involved 
in the arbitrary extrapolation of the viscosity to 
zero rate of shear. In a previous publication,2 

however, it was shown that advantage can be taken 
of the marked difference in non-Newtonian beha­
vior between rigid particles and random coils for the 
characterization of configurations or configurational 
changes. For rigid particles the intrinsic viscosity 
at high shearing stress can be reduced to less than 
1. io of its original value, which is in striking con­
trast to the mild drop in viscosity for the corre­
sponding polymers in randomly coiled form. Fur­
thermore, the shear dependence of intrinsic viscos­
ity of an a-helical poly-7-benzyl-L-glutamate 
(PBLG) solution completely confirmed the viscos­
ity theories for rigid particles3-5 thus developing a 
new method for determining the rotary diffusion 
constant 6 and thereby the shape of the particles. 
Recently two additional PBLG samples became 
available to us. It seemed appropriate further to 
test the validity of the theories and also to deter­
mine the effect of various factors on the shear de­
pendence of viscosity. This paper will therefore 
describe the effect of molecular weight, degree of 
polydispersity, solvent viscosity and temperature 
on the non-Newtonian viscosity of rigid particles. 

Experimental Details 
A. Materials.—Two polv-7-benzvl-L-glutamate samples 

(Code Nos. PBLG 421 and 397) were obtained through the 
cuurtesv of Dr. E. R. Blout and Professor P . Dotv. Their 
molecular properties were: .V„. = 130,000 and 336,000«; 
.1/,, = 117,000 and 253.0007; U- (rods) = 890 and 2300 A. 
(assuming the length per monomer residue as 1.5 A.), re­
spectively. 

(\) Presented at the 135th American Chemical Society Meeting, 
Boston, April, 1959. 

(2) J. T. Yang, T H I S JOUKKAI., 80, 178:i (1958). 
(a) N. Saito. J. Phys. Soc. Japan, 6, 297 (1951). 
(4) J. G. Kirkwood, Rec. Irav. chim., 68, 1)49 (194.9); J. G. Kirkwood 

and P. L. Auer, J. Chem. Pkys., 19, 281 (lliol); J. G. Kirkwood and 
K, T. Plock, ibid., 24, «65 (1956). 

The reagent-grade solvent, m-cresol (Fisher Scientific 
Company), was redistilled before use. 

B. Viscosity Measurements.—A stainless steel capillary 
viscometer was used for the viscosity measurements. It 
was built by the Franklin Institute, Philadelphia, and its 
basic design has been described elsewhere.8 The dimensions 
of several capillary tubes are listed in Table I. The applied 

Capillary 
no. 

i 
2 
4 
S 
9 

11 

DIMENSIONS 

TABLE I 

OF 

Length L, cm. 

30.485 
30.485 
30.485 

1.521 
7.625 
0.150 

CAPILLARY TU: 

Radius R, cm. 

0.2527 
.1217 
.06109 
.01493 
.01496 
.00530 

BES 

L1K 

121 
251 
500 
102 
510 

28 

(a) H A. Scheraga, ibid.. 23, 
(6) P. Doty, A. M. Holtzer, J 

JOURNAL, 76, 4493 (1954); P. 
Holtzer, ihi,l.. 78, 9 17 (1956). 

(.7) P. Doty and J. T. Yan^, manuscript in pre! 

526 (1955) 
H. Bradbury and E. R. Blout, THIS 
Doty, J. H, Bradbury and A. M. 

pressure (dry nitrogen gas) can be varied from 2 cm. water 
to a maximum limit of about one hundred atmospheres. 
The viscosity rj defined as the ratio of the shearing stress r 
to the rate of shear D was calculated from the equations 

T = XP(RIIL) (1) 
and 

D = 4Q/TTR3 (2) 

where AP is the applied pressure, Q the volume flow rate 
and R the radius and L the length of the capillary, T being 
maximum at the capillary wall. The experimental D in 
eq. 2 was further corrected for the inhomogeneous flow in a 
capillary by the relation9 

Dcor = Z W i (n + 3)/4 (3) 

where n is the slope of the log D-log r plot at any T (or D) . 
The well-known Kroepelin equations10 for the mean rate of 
shear D _ 

D = HQ/3TR3 (4) 

and the mean shearing stress T 

f = XP(Rf-U.) (5) 

were not used here, since they are valid only for Newtonian 
flow. It should, however, be pointed out that eq. 3 is also 
not exact since it is derived from the power law 

D = kr» (6) 

at any chosen T (or D) (k being a constant) and by assuming 
a constant n across the capillary. Actually n is unity at the 
center of the capillary where the flow is Xewtonian and 
greater than one toward the wall of the capillary where the 
flow is non-Newtonian. In a previous publication,2 how-

(8) W. Philippoff, Koiloid-Z., 75, 2 (l»yu); F. H. Gaskins and W. 
Philippoff, paper presented at the Christmas Symposium on Non-
Newtonian Fluids in Science and Engineering, Division of Industrial 
and Engineering Chemistry, American Chemical Society, Pittsburgh, 
Pennsylvania, 1958. 

(9) W. Philippoff, "Viskositat der fColloide/' Steinkopff, Dresden, 
1912, ]). 12. 

(10) If. Kroepelin. Knlloid '/... 47, 29 1 (1929) 
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ever, eq. 1,2 and 3 rather than eq. 4, 5 and 3 gave very good 
agreement between theory and experimental results and 
appeared quite adequate for the purpose of our calculations. 

The intrinsic viscosity [tj] at constant shearing stress was 
calculated according to Martin 's equation.11 Although 
thirty or more experimental points were measured for each 
flow curve, the precision of the data was greatly improved 
by drawing a smooth curve through the points and using 
smoothed values to calculate [r;]. At very high stress the 
intrinsic viscositj^ values were unavoidably less accurate 
due to the small difference in viscosity between the solution 
and solvent. On the other hand, the kinetic energy cor­
rection for the m-cresol solution was negligible throughout 
the entire flow curve with the capillary tubes employed, even 
at the highest T studied. Neither was turbulent flow pres­
ent, since the Reynold's number for all the solutions studied 
was well below the critical range of 2000-4000. 

Results 
Three series of flow curves were measured in m-

cresol at 25.0° over a wide range of shearing stresses 
(from 10 to 10s dynes cm."-2). The series were on 
polymers: (1) PBLG 421, (2) PBLG 397 and (3) 
a mixture of 3 parts No. 421 and 1 part No. 397 
(by weight). Four or five concentrations were em­
ployed for each series so that the intrinsic viscosi­
ties could be determined with reasonable confi­
dence. Another series for No. 397 also was studied 
at 12.5° to test the effect of solvent viscosity and 
temperature on the non-Newtonian behavior of 
rigid particles. 

A representative series of flow curves is shown in 
Fig. 1 where the rate of shear is plotted against the 

0 

••"/if 

1 2 3 4 5 

lOg T. 

1.—F"low curves of PBLG Xo. 397 in >»-cresol at 
The experimental points at T > 104 were omitted 

in the plot. Concentrations: O, 0.379%; A, 0.502%; 
X, 0.621%; A, 0.776%; « ,0 .918%. 

Fig. 
5.0°. 

shearing stress on a double logarithmic scale. As 
was found previously the non-Newtonian viscosity 
becomes significant above a critical shearing stress 
Tc which in turn depends upon the length and the 
axial ratio of the rods. In Fig. 2 are shown the 

(11) A. F. Mart in , Abst. 103rd ACS Meet ing , April, 1942, p. 1-C; 
H. M, Spurlin, A. F. Martin and H. G. Tennent , J. Polymer Sci., 1, P>3 
(i l i lr,) . 

0.1 

0 0.8 1.2 0.4 
C, g. dl ."1 

Fig. 2.—Martin's plot of PBLG No. 397 a t constant 
shearing stress: open circles, stainless steel capillary viscom­
eter; closed circles, Ubbelohde viscometer (T < TC). 

Martin's plots11 at constant shearing stress for 
PBLG No. 397. The good agreement between the 
intrinsic viscosities obtained from the present in­
strument and the Ubbelohde-type viscometer (full 
circles) at T < TQ indicates that reasonably precise 
extrapolation of r/sp./e to zero concentration can be 
achieved even using fairly concentrated solutions. 

Discussion 
A. Intrinsic Viscosity as a Function of Shearing 

Stress.—According to the viscosity theories of 
rigid particles3-5 the ratio of the intrinsic viscosity 
at finite shear to that at zero shear is given by 

IV]D/[V]D.O = f(a, p) (7) 

where p is the axial ratio and a is defined as a = 
DfQ, 6 being the rotary diffusion constant of the 
rod-like particles. From Perrin's equations12 

mQb/T = (3/V16«i3)[2 In (2a/6) - 1], a > oh (8a) 

for prolate ellipsoids, and 
VoQa/T = 3k/52b\ b»a (8b) 

for oblate ellipsoids, one finds that rjuQ/'T is a con­
stant characteristic of the macromolecules, inde­
pendent of either Tj0 or T. Here a and b are the 
semi-major and -minor axes, respectively, r?0 is the 
solvent viscosity and k and T have the usual mean­
ing. By simple substitution one finds that 

a = (r/T)/(Voe/T) (9) 
Thus 
[V]T/[V}T-O = MD/MD-O = 

F{T/T)P, -T10QIT = constant (10) 

noting that r = -qaD at infinite dilution. By plot­
ting hlr /hlr-o against TIT each system will yield a 
composite curve which is independent of the solvent 
and 7or temperature used, provided of course there 

(12) F. Perrin, J. phys. radium, [7] 5, 107 (1931). 
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are no configurational changes under the various 
conditions employed. For this reason, the intrin­
sic viscosities are plotted as a function of shearing 
stress (at constant temperature) in Fig. 3.13 

1.0 I * * , * _ » c-..,-o..... .- __ J 

4' o.fi ! \ • 

3 o,i \ * '. 

0.2 [ " > ' . . 

1 2 3 4 

log T. 

Fig. 3.—Shear dependence of the intrinsic viscosities of 

PBLG: circles and crosses, experimental values; lines, 

theoretical curves (broken lines to the right of the arrows, 

extrapolated curves): curve 1, voQ/T — 0.76; curve 3, 

voQ/T = 0.054; curve 2, calculated on the basis of 3 parts 

curve 1 and 1 part curve 3 (by weight). 

The obvious feature in Fig. 3 is the sharp drop in 
fo] with increasing r. For PBLG No. 397 h]T was 
reduced from 6.7 at r = 0 to about 0.2 at the high­
est attainable shearing stress, whereas for No. 421 
it dropped from 1.3 to less than 0.3 in the same 
range of shearing stress. Previously2 it was shown 
that the intrinsic viscosity at high stress of the same 
polypeptide in the randomly coiled form retained 
more than 50% of its value at zero stress. The 
marked difference in the shear dependence of in­
trinsic viscosity between rod-like particles and 
flexible coils clearly provides a new means for the 
study of changes in polymer configurations, as, for 
example, in protein denaturation. 

According to eqs. 8 and 9 the critical stress (when 
« = 1) would be expected to be much smaller for 
longer than for shorter particles since the former 
have a smaller TJQQ/T. This expectation was in­
deed fulfilled, as is clearly illustrated in Fig. 3, 
where PBLG Nos. 421 (curve 1) and 397 (curve 3) 
have mean rjoQ/T of 0.76 and 0.054, respectively. 
From the theoretical calculations5 the shear de­
pendence of [rj] appears to be insignificant for a < 1. 
Suppose, now, the common Ubbelohde- or Ost-
wald-type viscometer has a shearing stress of about 
ten. It can be shown easily that no non-Newtonian 
viscosity at, say, 25° will be detected within experi­
mental errors for particles having length (prolate) 
less than 1900-2900 A. (for axial ratio, p = 5-300) 

(13) As has been pointed out previously2 measurements in an Ost-
wald- or Ubbelohde-type viscometer are made under virtually con­
stant shearing stress since eq. 1 can be re-written as 

T = hdgR/2L 

where h is the mean hydrostatic pressure head, g the acceleration of 
gravity and d the density of the solution used, noting that variation 
of d with concentrations is almost negligible. In the study of shear 
dependence of viscosity most workers by tradition prefer to express 
the viscosity as a function of rate of shear. Evidently the latter is 
not constant in a viscometer and varies inversely with the solution vis­
cosity. It is therefore recommended that the shearing stress rather 
than the rate of shear be employed in the extrapolation of viscosity to 
zero shear. 
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or diameter (oblate) of about 1500 A. or less. If the 
assumed shearing stress is increased by tenfold, the 
corresponding limits should be reduced to 900-
1300 A. for the prolates and about 700 A. for the 
oblates. Thus most of the globular proteins would 
not exhibit non-Newtonian behavior within ex­
perimental errors in the ordinary Ubbelohde- or 
Ostwald-type viscometers, mainly because the 
numerical values of ijo© are much greater than the 
applied shearing stress. On the other hand for 
highly elongated or extremely flattened particles 
such as tobacco mosaic virus, actomyosin and 
cellulose crystallites, the shear dependence will be 
quite appreciable even with the commonly used 
capillary viscosimeters. If a falls in the regions 
where the sharp drop in intrinsic viscosity with 
shear is observed, it is not difficult to see that the 
customary extrapolation to zero shear by plotting 
the intrinsic viscosity against the rate of shear 
would indeed be a very risky and uncertain proce­
dure. 

The curves in Fig. 3 were calculated on the basis 
of weight-average molecular weight from light 
scattering. PBLG Nos. 421 and 397 (curves 1 and 
3) were assumed to have yt>Q/T values as mentioned 
above. Curve 2 was obtained by using the well-
known relation 

W = 2CiWi (11) 

for each chosen shearing stress. The good agree­
ment between theory and experimental values in 
Fig. 3 is self-explanatory and thereby supports the 
previous conclusions2 concerning the validity of the 
viscosity theories for rigid particles and the deter­
mination of the rotary diffusion constant from the 
non-Newtonian viscosity.14 In fact, the agreement 
between theory and experiment for PBLG No. 397 
is somewhat better than expected because the sam­
ple is somewhat polydisperse and because of the 
unavoidable few per cent, error in the extrapola­
tion in the Martin plots. 

B. Effect of Solvent Viscosity and Tempera­
ture.—To illustrate eq. 10 a series of flow curves of 
PBLG were also measured in w-cresol at 12.5°, at 
which temperature the solvent viscosity was more 
than twice that at 25.0°. As can be seen in Fig. 4 a 
composite curve of [TJ] versus r/T was indeed ob­
tained as expected. Needless to say, two different 
curves would have resulted if the intrinsic viscosity 
had been plotted against the rate of shear. Here is 
another indication that r/T or r (at constant T) 
appears to be a more logical variable than D for 
expressing the viscosity behavior of polymers. 

(14) With the determination of the rotary diffusion constant, O, 
from either non-Xewtonian viscosity or flow birefringence, one can 
formulate a relation between the molecular weights, M, of a homolo­
gous series of polymers and their ijo9/r values. According to eq. 8 
oblate ellipsoids (having the same major axis) woxild yield 

7YT70B = K0M
3 

whereas prolate ellipsoids (having the same minor axis) would have 
an exponent slightly less than three due to the small variation of the 
logarithmic term with molecular weight. For the PBLG series we 
have found that 

T/VuO = KvM--*°-

Here Ko and Kp are two constants. Thus, in principle one should 
be able to determine the molecular weights of polymers from a cali­
bration curve, provided rjoQ/T is known. If the polymer is polydis­
perse, however, it is difficult to choose the proper 8 values. 
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Fig. 4.—Effect of solvent and temperature on the shear 

dependence of the intrinsic viscosities of PBLG No. 397: 
closed circles, m-cresol a t 12.5°; open circles, data taken 
from Fig. 3. 

C. Effect of Polydispersity and the Apparent 
Length.—Since the longer particles have smaller 
TC values than the shorter particles, it is conceivable 
that the composite curve of many components in a 
polydisperse system would result in a broadening 
of the non-Newtonian region, noting that each 
component has its characteristic viscosity curve. 
That this is so is clearly illustrated in Fig. 3, 
where curve 2 is flatter than either of curves 1 and. 
3. To pursue this point further we have calcu­
lated the intrinsic viscosities as a function of r/T 
for a Gaussian and a most probable distribution15'15 

through graphic integrations of eq. 11 and by as­
suming a mean length Lw of 1800 A. As is shown 
in Fig. 5, both calculated curves spread over a 
wider non-Newtonian region. Furthermore, they 
lie lower than the curve for a monodisperse system 
having a length equal to Lw, in exactly the same 
manner as the extinction angle of the flow birefring­
ence of a polydisperse system.1* In both cases the 
apparent rotary diffusion constant 9 at any chosen 
shear for a polydisperse system is always smaller 
than that corresponding to Lw. The reason is 
simply that at low shear the longer particles are 
more easily oriented, thus yielding a smaller ap­
parent 9. As the shear increases, even the shorter 
particles become oriented and as a consequence the 
apparent 9 gradually increases. Finally as the shear 
approaches infinity the viscosity curve approaches 
that for a monodisperse system having the length 
Lw and the mean 9 results. 

I n T a b l e I I a r e l i s t ed t h e a p p a r e n t l e n g t h s a t s ev ­
era l s h e a r i n g s t resses for t h e m o s t p r o b a b l e d i s t r i b u ­

tes) A Gaussian distribution for the weight fraction can be ex­
pressed as 

(/J/TTVO exipl-k2 (AL/Lo)2] 
where AL = L — Lo, L is the length of the particle, Lo the mean 
length and Ii is a constant which determines the spread of the dis~ 
tribution. In our calculations we have taken Lo = Lw = 1800 A. 

(16) The weight-average degree of polymerization Xw and the 
weight fraction Wx of a most probable distribution are given as17 

XW = (1 + P)/(I - P) 
and 

Wx = X(I — P)'- px~l 

where x is the degree of polymerization and p the probability of con­
tinuation of the linear chain. In the present case, x w = 1200. 

(17) See, for example, P. J. Flory, "Principles of Polymer Chemis­
try," Cornell University Press, Ithaca, N. Y., 1953, Chapter VIII. 

(IS) H. A. Scheraga, / . Chem. Phys., 19, 983 (1951). 

Log ( r / T ) . 

Fig. 5.—Shear dependence of the intrinsic viscosities of 
rods obeying hypothetic molecular weight distributions. 

tion curve in Fig. 5, as calculated by the method de­
scribed previously.2 As is expected the apparent 
length decreases with increasing shear (with the 
exception of r = 0), since the apparent 9 is smaller 
at lower shear. Thus, like flow birefringence the 
shear dependence of viscosity is another sensitive 
method for the detection of polydispersity of rigid 
particles. The seeming paradox at T = 0, where 

TABLE II 

APPARENT LENGTHS OF R I G I D ELLIPSOIDS OBEYING A M O S T 

PROBABLE DISTRIBUTION 

L„ = 1800 A., 2b = 18 A. 

0 2080 
1.11 4760 
3.34 4040 

11.1 3380 
33.4 2860 

111 2600 
334 2460 

the mean length is smaller than that at r = 0, can 
be explained as follows: as the shear approaches 
zero the viscosity of the solution is entirely affected 
by the Brownian motion of the particles. The mean 
length therefore can be calculated with the aid of eq. 
11 for T = 0. As soon as the shear increases, how­
ever, the orientation effect becomes significant for 
the longer particles, resulting in a drop in viscosity 
and thereby a sharp increase in the calculated ap­
parent length. Thus in an Lapp-r plot the extrap­
olated length may approach the upper limit of the 
longest particles but definitely does not represent 
the mean length at zero shear. The same argument 
can be applied just as well to the flow birefringence 
lengths. In Table II it is also noted that the length 
at T = 0 as calculated from the intrinsic viscosity 
was slightly higher than Lw. This is due to the fact 
that for polymers having the most probable distri­
bution the ratio of Mv (viscosity-average molecular 
weight) to Mw is equal to [(I + a)T(l + a)]'A/2,19 

where T(I + a) is the gamma function of (1 + a), 
and a is the exponent in the viscosity-molecular 

(19) J. R. Schaefgen and P. J. Flory, THIS JOURNAL, 70, 2709 
(1948). 
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weight equation 
M = AM/» (12 ) M 

D. Power Law of Viscosity.—For many years 
there has existed a controversy on the so-called 
power law of viscosity.22 By simple geometric 
analysis viscosity should be an even function of r 
(or D) since it is independent of the direction of r 
(or D). The majority of published data, however, 
suggests an uneven function at low shear values, 
which contradicts most of the theoretical considera­
tions. From the results in Figs. 3 and 5 one finds 
that the degree of polydispersity could be at least 
one of the complicating factors which is responsible 
for the disagreement between theories and experi­
ments. In Fig. 3, curves 1 and 3, which were vir­
tually parallel to each other, obeyed the power law 
according to the theory of Saito3 or Kirkwood.4 On 
the other hand, curve 2 spread over a broader non-
Newtonian region than either of the other two curves 
and did not agree with the even function of shear. 

1 " 300 i 
^ ; (A! PROLATE 
jjr 

I 300 

i 
. I (B) OBLATE 

2 5 10 20 50 100 

a. 

Fig. 6 .— [i?]T /Mr-i) as a funct ion of a. Theo re t i c a l 

va lues were t a k e n from ref. 2 a n d 4, p or 1/p be ing axial 

r a t ios . 

This deviation is even more evident in Fig. 5, where 
curves of ^1 = 1/1+Xi and y2 = 1/1+X2'2 are 
plotted as y versus log x and superimposed on the 
theoretical curves for different distributions. 
Clearly both the Gaussian and most probable dis­
tributions fit with the first-power law (broken lines) 
at low shear values with an error of less than 2 % . 
The agreement would be even better if one ex­
presses the power law as 

Mr/Mr.,, = 1 - AT + S T 2 - - - (13) 

On the other hand the monodisperse curve agrees 
with an even power law as predicted by the theo­
ries. Thus for a polydisperse system it is possible 

(20) Both a and K in eq. 12 depend on the applied shear. At 
zero shear, a ~ 1.7. When non-Newtonian viscosity becomes sig­
nificant, a decreases and K increases with increasing shear, mainly 
because the higher the molecular weight of the polymers the faster the 
intrinsic viscosity drops with increasing shear. Similar observations 
have been reported recently by Kuroiwa and co-workers21 for poly­
styrene solutions. At very high shear the a values would be expected 
to rise again since the intrinsic viscosity of lower molecular weight 
polymers would also drop drastically under these conditions. For 
PBLG we have found that a reached a minimum of about 0.7. 

(21) K. Kawahara, M. TJeda, Y. Oka and T. Kuroiwa, J. Polymer 
ScL. 31, 245 (1938). 

(22) For a recent brief review, see J. J. Hermans, Ann. Rev. Phys. 
Chem., 8, 179 (1957); in particular, p. 185-18(>. 

to obtain a pseudo-odd function of T (or D) even 
though each component obeys an even-power equa­
tion. Although this interpretation is aimed at the 
rigid particles, the same argument is expected to be 
applicable to flexible chains as well. Furthermore, 
unavoidable experimental errors can frequently 
cause agreement with either odd or even function in 
the low shear ranges. Thus, the current contro­
versy appears to have been overemphasized. 

The above controversy has an important impli­
cation in the determination of viscosity at zero rate 
of shear. Many workers prefer to plot r/ap/c or [77 J 
against the rate of shear and extrapolate it to zero 
rate of shear although the theories predict an even 
function of the shear. This procedure may be per­
missible within experimental errors, although even a 
straight line from the plot does not necessarily yield 
a t rue viscosity at zero shear, as has been pointed 
out by Eisenberg23 recently. Needless to say, the 
situation will be much worse if the rj-D plot exhibits 
an upward curvature as the rate of shear approaches 
zero. 

E. Extension of Theoretical Values.—The nu­
merical solutions of Saito's theory3 as tabulated by 
Scheraga6 were limited to a = 60 because of the 
limited internal storage capacity of the Mark I com­
puter. For most of the experimental measurements 
this range is more than adequate for the charac­
terization of rigid particles. However, since meas­
urements over a wide range of shear are required to 
detect and characterize the presence, if any, of poly­
dispersity, it is frequently necessary to extend this 
limit of a beyond 60. I n particular, highly elon­
gated (or flattened) particles would reach the above 
limit much faster than the shorter ones, even when 
the applied shear is moderately small. Fortu­
nately, a plot of viscosity increment v' or the ratio, 
foW[»?]r=o or [T?]D/MD-O versus a on a double log­
arithmic scale was found to yield a straight line at 
a above five for both prolate and oblate ellipsoids, 
as can be seen in Fig. 6. Thus the limit of a can be 
extended by an order of magnitude or two through 
simple extrapolation. Admittedly this procedure is 
arbitrary and without theoretical justification and 
can result in appreciable errors. For the sake of 
comparison the extinction angle x of flow birefring­
ence was also plotted against a on a double logarith­
mic scale, using the published theoretical values.2J 

Above a = 5 a straight line also resulted (figure not 
shown). However, a gradual downward curvature 
appeared between a = 60 and 200 (upper limit of 
the tabulated values), i.e., x was somewhat smaller 
than tha t predicted by the extended straight line for 
any chosen a. The authors in ref. 24 have pointed 
out that for a ^ 60 the error of their tabulated val­
ues is well under 1%, but for a ^ 60 the listed re­
sults are significantly in error for all but very small 
axial ratios (p), because of the fact tha t the limiting 
values of the slowly converging series in their com­
putations have not been reached in the latter cases. 
In fact, from their Fig. 7 one finds tha t the calcu­
lated extinction angles for p = 00 at a ^ 60 lie sig­
nificantly lower than the curve shown in the figure, 
which might account for the apparent downward 

(23) H. Eisenberg, J. Polymer SrL, 23, 57!) (1057). 
(24) H, A, Scheraga, J. T. Kdsall and J. O. Gadd, Jr.. / . Chem. 

Phys., 19, 1101 (1951). 
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curvature in the log x~l°g a plot- Thus it is not 
certain what deviation, if any, would occur at a ^ 
60 and, if so, to what extent it deviates. The same 
argument can equally be applied to the [r;]-a plot. 
Therefore it is gratifying to find the good agreement 
between the experimental points (Fig. 3) and the 
extended theoretical values (broken lines), thus en­
abling one to use these extrapolated values with 
some confidence. The lower experimental values 
than the calculated ones in curve 3 were at least 
partly due to the significant experimental errors at 
high shearing stresses. Similar strikingly good 
agreement was also found between extrapolated 
theoretical values and experimental points for 
PBLG No. 416 in the previous publication2 even 
for a 20-fold extension of a (to 1200) (figure not 
shown here). Nevertheless, the possible uncer­
tainty involved in the extrapolation as mentioned 
above could be very serious and should be used with 
reservation unless future experiments indicate 
otherwise. 

NOTE ADDED IN PROOF.—Professor J. J. Hermans 
has kindly pointed out that the viscosity at the 
capillary wall, rj, can be obtained by straightforward 

Introduction 
Kenney and Laubengayer2 prepared dimethyl-

gallium hydroxide as monoclinic crystals soluble 
in a variety of organic solvents and melting with 
accompanying slow decomposition at 87 to 88.5°. 
Cryoscopic and dipole moment measurements on 
benzene solutions led to the trimeric formula 
(Me2GaOH)3 and a moment of 1.8 debyes for the 
solute molecule. Both in solution (cyclohexane, 
carbon tetrachloride) and in a Nujol mull, the 
compound showed strong infrared absorption bands 
attributable to OH. These data led the authors2 

to postulate the cyclic trimer with gallium and 
hydroxyl oxygen atoms alternating around a central 
six-membered ring as the characteristic species in 
solution and probably also in the crystal. The 
related but thermally more stable compounds 
(Me2GaXMe)n, in _ which X = O, S, Se, were 
found3 to be dimeric in the vapor phase and were 
assigned3 a structure with Ga and X atoms alter­
nating about a central four-membered ring. 

(1) Supported in part by National Science Foundation Research 
Grant NSF-G5924. 

(2) M. E. Kenney and A. W. Laubengayer, T H I S JOURNAL, 76, 4839 
(1934). 

(3) G. E. Coates and R. G. Hayter, J. Chem. Soc, 2519 (1953). 

differentiation and represented as 
l/v = (l/xi?V)d((2r3)/dr 

the symbols having the same meaning as those 
in eq. 1 and 2 (see also, J. Hermans, Jr., and J. J. 
Hermans, Proc. Koninkl. Ned. Akad. Wetenschap., 
B61, 324 (1958)). It can be shown that the 
above equation also yields eq. 3 but without as­
suming a power law (eq. 6). Thus eq. 3 becomes 
perfectly exact. In a recent note Reichmann (/. 
Phys. Chem., 63, 638 (1959)) has also discussed 
the effect of polydispersity on non-Newtonian 
viscosity. Philippoff and Gaskins {ibid., 63, 985 
(1959)) have reinterpreted the author's earlier 
data (ref. 2) in the light of the power law of vis­
cosity. 
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The X-ray diffraction study now reported shows 
that the characteristic molecular species in crystal­
line dimethylgallium hydroxide is in fact the cyclic 
tetramer of Fig. 3. 

Experimental 
Slow evaporation of cyclohexane solutions of purified di­

methylgallium hydroxide, kindly furnished by Dr. Kenney,2 

gave well-developed crystals having the aspect of rhomboidal 
plates. When exposed to the atmosphere the initially color­
less crystals slowly developed a white coating insoluble in 
cyclohexane. The useful life of all specimens used for X-ray 
study was prolonged by means of a protective coating of 
polyisobutylene. 

All X-ray data were photographically recorded using Cu 
Ka radiation filtered through nickel foil. The unit cell data 
are as follows: diffraction symmetrv, 2 /m; lattice con­
stants, a = 8.62 ± 0.01, b = 1 2 . u ' ± 0.04, c = 8.50 ± 
0.02 A., (3 = 92.05 ± 0.10°; density, measured2 as 1.75 g./ 
c c , calculated as 1.74 g./cc. assuming eight monomeric 
molecules within the cell; space group, P2i /c . The pres­
ence of a few weak reflections forbidden by the glide plane 
was in all cases convincingly explained4 in terms of double re­
flection,6 and the subsequent structure analysis was in all 
details compatible with the space group P2i/c . 

(4) For details of this analysis see Gordon S. Smith, "The Crystal 
Structure of the Cyclic Tetramer of Dimethylgallium Hydroxide." 
Cornell University Thesis, Cornell University Library, 1957. 

(5) M. Z. Renninger, Z. Krist., 97, 95 (1937); Z. Physik, 106, 147 
(1937). 
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The Structure of the Cyclic Tetramer of Dimethylgallium Hydroxide1 

BY GORDON S. SMITH AND J. L. HOARD 

RECEIVED FEBRUARY 21, 1959 

The monoclinic unit of structure of dimethylgallium hydroxide has a = 8.62 ± 0.01, b = 12.14 ± 0.04, c = 8.50 ± 0.02 
A., i3 = 92.05 ± 0.10°, P2i/c as space group, and contains 8Me5GaOH. Patterson, Fourier and difference syntheses of 
photographically recorded X-ray intensity data from the three principal zones of reflection lead to determination of struc­
ture. The characteristic species in the crystal is the cyclic tetramer (Fig. 3) of 1 symmetry with hydroxyl oxygen and 
gallium atoms forming an eight-membered central ring. Averaged values of bond lengths are GaO = 1.96, GaC = 1.97 A. 
and of bond angles are OGaO = 98.8, GaOGa = 133.1, CGaC = 129.2, CGaO = 106.2°. The compact molecules pack 
together closely in the crystal. 


